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Abstract

We discuss different ways to convert observed, apparent particle size distributions from 2D
sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions.
We give a simple, flexible and practical method to do this, show which of these techniques gives
the most faithful conversions, and provide (online) short computer codes to calculate both 2D-
3D recoveries and simulations of 2D observations by random sectioning. The most important
systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate
of the abundance of the larger particles. We show that fairly good recoveries can be achieved
from observed size distributions containing 100-300 individual measurements of apparent particle
diameter.

INTRODUCTION

Proper determination of particle size distributions in chondrites - for chondrules, CAIs, and metal
grains - is of basic importance for assessing the processes of formation and/or of accretion of these
particles into their parent bodies. To date, most information of this sort is gathered from 2D samples
cut from a rock such as in microscopic analysis of thin sections, or SEM maps of planar surfaces
(Dodd 1976, Hughes 1978a,b; Rubin and Keil 1984, Rubin and Grossman 1987, Grossman et al
1988, Rubin 1989, Metzler et al 1992, Kuebler et al 1999, Nelson and Rubin 2002, Schneider et al
2003, Hezel et al 2008; Fisher et al 2014; for an exhaustive review with numerous references see
Friedrich et al 2014). While qualitative discrimination between chondrite types can readily be done
using data of this sort, any deeper exploration of the processes by which chondrite constituents were
created or emplaced into their parent requires a more quantitative approach.

BASIC METHODOLOGY

For simplicity we will consider that the particles can be approximated by spheres (discussed further
below). There are well-known sampling effects which cause the observed propertyNA(d), the number
of particles with apparent diameter d per unit area, to differ from the more fundamental, desired
quantity NV (D), the number of spheres of true diameter D per unit volume. Specifically, sections
tend to cut particles non-diametrically, diminishing the fraction at true diameter D and artificially
increasing the fraction at smaller apparent diameters. It can be shown from geometry alone that, for a
monodispersion of spheres having true diameterDo, random sectioning produces a distributionNA(d)
with modal apparent diameter d = πDo/4 (Weibel 1979, ch. 2). However, even in this simple case,
the distribution of apparent diameters is more complicated than a mere shift of the sphere distribution.
In a second effect, large objects are overrepresented in apparent diameter distributions. Correcting
fully for these effects is straightforward, but the literature is somewhat confusing and there are a
number of approaches to doing the same thing, with subtly different notation. This note attempts to
clarify and codify the approach, with citations to what we have found to be the most helpful books
and articles (some recent, some not) on the subject, and give some tips as to the number of apparent
diameter observations needed for good results. In the meteoritics literature the most recent and most
widely cited study is by Eisenhour (1996); however, the problem is widely discussed in even greater
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detail in several other fields, especially biology and materials science, where it is but one part of
the discipline of “Stereology”, or inferring 3D properties of often much more complicated structures
from observed 2D sections. In fact the earliest treatment is in the study of red blood cells (Wicksell
1925). The clearest and most useful books we have found, which cover most of the recent important
developments, are by Weibel (1979, 1980).

The problem can be broken down into several distinct steps. If the particles can be considered
spheres, the basic transformations are very simple. One needs to allow for (a) the off-center section-
ing effect above, (b) the fact that a given large particle is sampled by random plane sections more
frequently than a given small one, and, (c) some implications of section thickness. Eisenhour (1996)
deals with (a)-(c), although we think the approach described herein has greater flexibility and is easier
to use. To a higher degree of complexity, (d) if the particles are randomly oriented ellipsoids, their
axial ratios can also be backed out in a similar way (Cruz-Orive 1976, 1978, 1983; Weibel 1980,
Liang and Enfield 2011); this situation is different from known cases where parent body plastic com-
pression and distortion has turned an initial set of spheres into a set of ellipsoids sharing a common
orientation. We will not discuss either degree of sophistication here, restricting our application to un-
deformed, equidimensional particles which can be approximated by spheres. In addition, Cruz-Orive
(1976, 1978, 1983) also gives expressions for the best estimate of the variance or standard error asso-
ciated with the derived values of NV (D). In earlier papers and sources, including Cruz-Orive (1976,
1978), it is usually stated that these inversion techniques are only valid for low particle volume density
because they assume Poisson properties. However, in a good review article, Cruz-Orive (1983) cites
more recent work to show that low particle density is not a requirement; it is only required that the
statistical properties are invariant from one section to another.

In all applications the different properties NA(d) and NV (D) are binned the same way, into
a set of diameter bins with lower and upper boundaries at (di−1, di), with d1 representing the top
end of the smallest particle size bin1. The N bins can be arithmetically or geometrically spaced, or
even have a more general distribution (Cruz-Orive 1983). We will assume for most purposes that the
binning is regular, so either di = di−1 + ∆, with ∆ = Dmax/N (arithmetic), or di = di−1c, with c =
(Dmax/Dmin)1/N (geometric). The geometric binning is used in much of the original work (Saltykov
1967, Wicksell 1925), and the arithmetic binning in more recent work (see Underwood 1970 and
Weibel 1979, 1980 for excellent background). In arithmetic binning the number of particles per bin is
simply proportional to the more fundamental number per unit diameter, whereas in geometric binning
the number per bin must be divided by the (variable) bin width to give the number per unit diameter.
However, we will find that one form of geometric binning provides the optimum recovery.

The Forward Problem

The simplest way to understand the technique is to consider the “forward problem”: how a true
diameter distributionNV (Dj) is manifested in a distribution of apparent diametersNA(di) taken from
a section or sections. Note that subscript j refers to a bin number for true diameters D, and subscript
i to a bin number for apparent diameters d. Both apparent diameters and true diameters share the
same bin boundaries (but in some cases the nominal diameter is in the center of a bin). The sampling
process can be written as a sum, in which each apparent diameter bin contains weighted contributions
from spheres in a range of true diameter bins of the same size or larger:

NA(di) = ΣN
j=iFijNV (Dj). (1)

1Some treatments, notably Saltykov (1967), reserve index 1 for the largest particle; this minor difference leads to a
more cumbersome notation and is not adopted by most recent descriptions of the technique.
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Figure 1: This sketch shows several ways to get the same chondrule apparent diameter, from chon-
drules of different true diameter. A color version is found in the online version. The black dashed line
shows one apparent diameter measurement (viewed in its plane) falling in the bin (di−1, di). Three
different size chondrules are shown, of true diameterDj−n, Dj, Dj+n. Because of their different sizes,
the probability Pij = 2dzij/Dj that each can contribute to an apparent diameter lying within (di−1, di)
decreases with increasing diameter. From simple geometry, z = (D2 − d2)1/2)/2 is the distance of
the section from the center of the chondrule, and dzij = ((D2

j −d2i−1)1/2− (D2
j −d2i )1/2)/2. Here, the

suitable range dzij is labeled only for the (blue) chondrule with diameter Dj . The probability Pi,j−n
that the black chondrule of size Dj−n can contribute (the normalized distance between the horizontal
black lines) is clearly larger, and the probability Pi,j+n that the large red chondrule can contribute (the
normalized distance between the horizontal red lines) is clearly smaller. These probabilities are the
matrix elements described in the text and used in the inversion algorithms.
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Creating a matrix Fij is a convenient mathematical shorthand for representing how each sphere of
diameter D is represented in smaller apparent diameter bins by the sampling process; note that Fij
has dimensions of length. It is the product of a nondimensional probability Pij that a measured
apparent diameter di has come from a sphere of diameter Dj , and a dimensional sample weighting
factor. Consider first the probability term Pij . A set of planes randomly intersects a target sphere of
diameter Dj = j∆ at different distances z from its center along a diameter, with equal probability per
unit length P (z) = 1/Dj , given that it intersects the given particle. The probability of the resulting
apparent diameter lying in a bin of width or thickness dzij = |zi,j − zi−1,j|, is Pij(zi,j − zi−1,j) =
2|zi,j − zi−1,j|/Dj (see figure 1); the factor of 2 allows for the fact that random planes can cut at the
same distance from the center in two places. Because zi,j = (D2

j − d2i )1/2/2 for spherical particles,
Pij(zi,j − zi−1,j) can be written directly as Pij(di, di−1).

Because a given large particle is sampled more often than a given small particle, at a rate pro-
portional to its diameter, Fij = DjPij (Underwood 1970, section 4.3.4; Weibel 1979, section 2.6;
Weibel 1980, ch. 6); the factor Dj provides the correct dimensional scaling between NA(di) (cm−2)
and NV (Dj) (cm−3). Imagine, for instance, a volume of side Dmax, containing just one sphere of di-
ameter Dmax and one sphere of much smaller diameter D(j); they have the same NV but for any total
number of cuts through the volume, the smaller sphere contributes a fraction D(j)/Dmax as many
profiles to the observed binning as does the large sphere. Note that equation (3) of Eisenhour (1996)
can easily be rewritten in a similar form, but corrects only for off-diametric slicing; that is, both No

and N ′o of Eisenhour (1996, equation 3) connote apparent diameters per unit area (see Underwood,
ch. 5, for discussions along this line), and the conversion to volume density of real spheres (factor
of 1/Dj) is incorporated as a separate term later in Eisenhour’s development. Eisenhour’s approach
involves an iterative, hands-on procedure correcting one size bin at a time starting with the largest,
similar to that of Saltykov (1967). Such recovery approaches are often called unfoldings. Here we will
emphasize a simultaneous solution for NV (Dj) in all size bins by a matrix inversion technique, using
the matrix Pi,j above, that is perhaps more suited to current analysis tools and accomplishes both of
these two most significant corrections at once. We refer to our recovery approach as an inversion.

A subtlety arises immediately regarding Pij , which has only been recognized in stereology in
retrospect. Here we closely follow Weibel (1979, sections 2.8 and 5.2.9; see Weibel 1980, chapter
6, for even more detailed derivations). One can adopt an experimentalist’s viewpoint based on dis-
crete binning (Saltykov 1967 et seq), or a mathematician’s viewpoint based on differential calculus
(Wicksell 1925); the apparently best version represents a blend of these (Goldsmith 1967, Cruz-Orive
1978). This difference appears for both arithmetic and geometric binning.

Arithmetic binning: In the first case, one writes the probability Pij of obtaining an apparent
diameter lying between bin boundaries di−1 = (i− 1)∆ and di = i∆, from a sphere of true diameter
Dj = j∆ (see figure 1), as

Pij(di−1, di) =
2|zi − zi−1|

Dj

=

√
D2
j − d2i−1 −

√
D2
j − d2i

Dj

. (2)

In the second case one writes the probability of finding the apparent diameter di, centered within
a small bin width ∆ = |di−1/2 − di+1/2|, as

Pij(di,∆) =
2|zi+1/2 − zi−1/2|

Dj

=

√
D2
j − d2i−1/2 −

√
D2
j − d2i+1/2

Dj

. (3)

The difference would be negligible in the limit ∆ → 0; however for the moderately coarse
binnings we are faced with in practice, it is significant. Similar expressions can be easily derived
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for geometrical bin spacings (see below). Writing the full coefficient Fij = DjPij , and substituting
the definitions above, we find for the arithmetic binning with apparent diameters lying between bin
boundaries as in equation 2 (Weibel 1979, 1980; Liang and Enright 2011):

Fij(di−1, di) =
√
D2
j − d2i−1 −

√
D2
j − d2i = ∆(

√
j2 − (i− 1)2 −

√
j2 − i2), (4)

or, using the arithmetic centered binning of Wicksell (1925) for apparent diameters as in equation 3:

Fij(di,∆) =
√
D2
j − d2i−1/2 −

√
D2
j − d2i+1/2 = ∆(

√
j2 − (i− 1/2)2 −

√
j2 − (i+ 1/2)2). (5)

Moreover, Goldsmith (1967) and Cruz-Orive (1978) independently developed a further refinement
which is somewhat of a blend between the two approaches mentioned above, that retains the apparent
diameter bin boundaries (di−1, di) but treats the contributing (larger) actual spheres as lying at the
center of their bins; that is, Dj = (j − 1/2)∆, leading to coefficients of yet a slightly different form
for Fij(di−1, di) = ∆(jPij):

Fij(di−1, di) = ∆(
√

(j − 1/2)2 − (i− 1)2 −
√

(j − 1/2)2 − i2) for j = 1, ..i− 1,

Fii(di, di) = ∆
√
i− 3/4 for j = i. (6)

Note that, for the Goldsmith-Cruz-Orive approach (equation 6) and the Wicksell approach (equation
5), the bin i = j requires special treatment to avoid square roots of negative numbers. This amounts to
treating it as a half-width bin with upper diameter boundary at the bin midpoint where the contributing
sphere diameter Dj has been defined. This logic leads (for the terms where i = j) to substitution of
i = j − 1/2 instead of i = j in only the second square root of equations (5) and (6), causing these
terms to vanish, and leading to the expression for Fii given in equations (6). The reader can verify that
the same logic, applied to the centered-binning scheme of equation (5), leads to Fii = ∆

√
i− 1/4.

Weibel (1979, section 5.2.9, table 5.6; 1980, table 6.6) shows that the final formulation of equations
(6) is significantly superior to, at least, that of equation (4), which is still often used in stereology
(including by Eisenhour 1996), and even misplaces the mode of the recovered distribution.

Geometric binning: Here, following the Saltykov approach where Dj is chosen at the upper
apparent diameter bin boundary Dj = di, but letting d increase with i as is more common so that

c = di/di−1 > 1, (7)

the dimensionless probability coefficients Pij and the full coefficients Fij are as usual related by :

Pij(di−1, di) ≡ Fij/Dj =
1

Dj

(√
D2
j − d2i−1 −

√
D2
j − d2i

)
=
√

1− c2(i−j−1) −
√

1− c2(i−j), (8)

where j ≥ i. Here, the on-diagonal terms i = j are automatically well-behaved since both Dj and
di are taken at the bin upper boundary, so the second square root vanishes and Pii =

√
1− 1/c2.

Equation (8) compares closely with Eisenhour’s equation (4) for geometrical binning, where c2 = 2
and, as in his equation (3), his i is our j − i+ 1. The coefficients obtained this way also numerically
agree with those tabulated by Underwood (1970, table 5.5), following Saltykov (1967), in a case
where c = 10−0.1 (here the absolute value of Pij must be used, and c → 1/c in equation (8), since
c < 1).

This geometrical case may be generalized along the lines of the Cruz-Orive “blended” method
which led to equations (6) above, assuming each contributing sphere Dj to lie at the geometric mid-
point of its bin, rather than the upper boundary dj: Dj = d1

√
dj−1dj/d21 = d1

√
cj−2cj−1 = d1c

j−3/2
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(where d1 is the upper boundary of the smallest diameter bin). Then

Fij(di−1, di) = DjPij = Dj(
√

1− c2(i−j−1/2) −
√

1− c2(i−j+1/2))

= d1(
√
c2j−3 − c2i−4 −

√
c2j−3 − c2i−2), and

Fii(di, di) = d1c
i
√
c−3 − c−4 = d1c

i−3/2√1− c for j = i. (9)

The on-diagonal term Fii in equations (9) is equivalent to Pii = Fii/Di =
√

1− 1/c, slightly different
than the expression associated with equation (8). Surprisingly, however, tests show (see below) that
the midpoint technique represented by equations (9) actually works less well than the nominal case
of equation (8) for geometrical binning, even while previous workers have found that, for arithmetic
binning. the midpoint variation works better (equations 6 vs. equation 4).

The Inversion Technique
The coefficients Fij are the essence of the inversion process and are seen to be defined entirely

by the bins chosen; for arithmetic spacings (equations 6), the bin thickness ∆ factors out, so a set of
dimensionless coefficients can be applied to a number of problems where the same number of bins
is adopted, regardless of bin size. Of course, different sets of coefficients would apply to particles of
different shapes; Saltykov (1967) gives examples for cubes. Tables of coefficients appear in various
books and articles, each specifying a different number of bins and each with slightly different notation;
yet, calculating these tables is straightforward in general, using coefficients described above.

Thus, measured apparent diameters resulting from each particle of true diameter Dj contribute
a “tail” extending to smaller (but not larger!) apparent diameter bins di. Saltykov (1967) and Un-
derwood (1970, section 5.3.3) give a verbal description of how this process is “unfolded” from a
sequential standpoint, making use of the fact that the largest profile can only derive from the largest
diameter sphere, and works iteratively from the largest bin through smaller profile size bins by remov-
ing contributions from larger (already corrected) true diameter bins. The same approach is advocated
in Eisenhour (1996).

However, the process can be expressed more compactly, and automated more cleanly, if ex-
pressed as a matrix inversion. If the largest particles are in bin 1 the notation is simpler (Saltykov
1967):

NA(d1) = F1,1NV (D1)

NA(d2) = F2,1NV (D1) + F2,2NV (D2)

NA(d3) = F3,1NV (D1) + F3,2NV (D2) + F3,3NV (D3)

..... (10)

where it can be seen that bins of apparent diameter receive contributions only from larger particles. If
the largest particles are in bin N and the smallest in bin 1, the notation is:

NA(dN) = FN,NNV (DN)

NA(dN−1) = FN−1,NNV (DN) + FN−1,N−1NV (DN−1)

NA(dN−2) = FN−2,NNV (DN) + FN−2,N−1NV (DN−2) + FN−2,N−2NV (DN−2)

..... (11)

where in both cases it can be seen that apparent diameter bins receive contributions only from larger
particles, and both can be written in the form of equation (1). Then, extracting the factor ∆ from Fij
and introducing the notation kij , we can write for the arithmetic binning

NA(di) = ΣN
j=1FijNV (Dj) = ∆ΣN

j=1(jPij)NV (Dj) = ∆ΣN
j=1kijNV (Dj), (12)
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where now the index can be written as j = 1, N because the terms to one side of the diagonal (j < i
in equation 1) are set to zero. For the geometrical binning we get (introducing the notation gij):

NA(di) = ΣN
j=1FijNV (Dj) = d1Σ

N
j=1(c

j−3/2Pij)NV (Dj) = d1Σ
N
j=1gijNV (Dj). (13)

Comparing (10) and (11) with (12), we see that kij ≡ jPij (in the notation of Weibel 1980) is a
upper-triangular matrix in case di = i∆ (smallest particle in bin 1), and a lower-triangular matrix is
obtained in the Saltykov (1967) approach where index j = 1 denotes the largest particle (equations
10).2 Similarly for the geometrical case, gij = cj−3/2Pij (see equation 9 and associated discussion).
We mention this only as an illustration of different approaches the reader might encounter; we will
deal with upper-triangular matrices and particle diameter increasing with bin number.

The solution for the unknown NV (Dj) is obtained by inverting the above matrix equation; for
the arithmetic binning we get:

NV (Dj) = ∆−1ΣN
i=1k

−1
ij NA(di), (14)

or in the slightly different notation of Cruz-Orive (1976, 1978, 1983)3 as

NV (Dj) = ∆−1ΣN
i=1P

jiNA(di), (15)

where P ji is the inverse of Pij; if Pij is upper-diagonal, so is P−1ij . For the geometrical binning
NV (Dj) = d−11 ΣN

i=1g
−1
ij NA(di). Since Fij = DjPij is our full correction matrix, and Pij is the

analogue of Eisenhour (1996) equation (4), our technique automatically applies Eisenhour’s second
correction (his equation 11) for preferential sampling of large particles.

It is tedious but algebraically straightforward to show that the coefficients resulting from the
iterative, sequential unfolding given by Saltykov (1967; see also Underwood 1970, section 5.3.3)
are exactly the same as result from a matrix inversion as shown above, starting with the simple,
geometrically determined Fij for the binning adopted by Saltykov (in this case Fij and F−1ij are lower-
diagonal). We feel it is preferable, given the wide availability of matrix inversion routines in all
languages and software packages likely to be used for this analysis, to leave the task of setting up
and inverting the matrix, in general, to the reader. However, in the Online Supporting Material we
provide our own Fortran codes. Tables in Weibel (1979, table 5.6; 1980, table 6.6), or our codes and
sample results, can be used to test the numerics of a new code. Weibel (1979) table 5.9 provides
kij = jPij = Fij/∆ and his table 5.8 provides the related coefficients αij = (jPij)

−1 using the
coefficients of Cruz-Orive (1978; for the binning of our equations 6); these can be adopted and used
directly, if 15 arithmetically spaced bins are adequate, as will be true in many cases. It is easily
verified that the coefficients kij in Table 5.9 agree with equations (6); the same tables are reproduced
in Weibel (1980, tables 6.7-6.8).

The implications of the finite thickness of 2D sections (such as microscope thin sections) have
been dealt with in the Stereology literature, and by Eisenhour (1996). The formal treatments in the
stereology literature (Goldsmith 1967, Underwood 1970, Weibel 1979, ch. 2; Cruz-Orive 1983) seem
exclusively to treat the matrix of the finite thickness section as transparent; that is, the effect of thick-
ness is simply to add more profiles of particles of all sizes, although Weibel (section 5.2.4) mentions
a different form and effect. The transparent matrix case is not obviously relevant for meteoritical thin
sections, where chondrules are closely packed, sections are generally cut thin enough that overlap-
ping chondrule measurements are not a problem, and where matrix is likely to be opaque. Eisenhour

2Note that a convenient numerical sanity check can be obtained from equation (12) using ΣiNA(di) =
∆Σj(jNV (Dj)ΣiPij) = ∆Σj(jNV (Dj) = ΣjDjNV (Dj) since ΣiPij = 1.

3Cruz-Orive uses α as the index representing apparent diameters, and i as the index denoting true diameters.
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(1996) mentions cases of both transparent and opaque matrix, but in the end his quantitative correc-
tion refers only to the (more realistic) opaque matrix case. This would seem to be a good subject for
future study. In many cases of interest (SEM or photomicrography for instance), plane front-surface
sections are used rather than “slices” of small but finite thickness, avoiding this problem and the need
to correct for it. Cruz-Orive (1983) includes yet another thin-section-related effect: “capping”, in
which caps cut very close to the “top” or “bottom” of a particle, where curvature is strong, have a
bias to smaller effective diameters or even to being missed. This effect seems to provide mostly a
fine-tuning parameter and we will not include it.

TESTING AND VALIDATION

We tested the various algorithms by comparison with a random-slicing technique. Both delta
function NV distributions, and lognormal distributions, were used as inputs. The delta functions
represented one particle per diameter bin, sometimes in two or more different diameter bins, per (the
same) unit volume. The lognormal distributions in diameter D had mean m and width w, defining the
parameters µ = log(m2/

√
m2 + w2) and σ =

√
log(1 + w2/m2):

NV (D)/∆ =
C

Dσ
√

2π
exp−(logD−µ)

2/2σ2

. (16)

Note the expression for NV /∆ is a distribution per unit volume, per unit diameter, so must be mul-
tiplied by the bin width (which might vary, in the case of geometric binning) to create a binned NV

in the spirit of this approach. Then the number of apparent diameters per bin becomes (to within an
arbitrary constant, depending on the number of cuts):

NA(di) =
∑
n

∑
j

NV (Dj)(Dj −Dj−1)(D(j)/Dmax)δ(di − di,n) (17)

where di,n = Dj

√
1− x2n is the apparent diameter (lying in bin i) resulting from the nth cut through

a single sphere of diameter Dj , xn is a random number between 0 and 1, and the Kronecker delta
represents binning of the nth cut into the appropriate apparent diameter bin i. As mentioned earlier,
the term (D(j)/Dmax) accounts for the sampling bias (Eisenhour 1996): any given sphere of diameter
D(j) smaller than the maximumDmax is sampled less often by that factor. The bin width ∆ is written
as (Dj − Dj−1), to allow for geometric binning schemes where it is not constant. Figure 2 shows
typical results for a delta function initial size distribution NV . The shape of the apparent diameter
distribution is characteristic of spheres (Weibel 1979, 1980), and the mode value depends on the bin
width.

We first tested three different inversion techniques on a lognormal distribution (equation 16)
with parameters not too different from recent recovered Allende samples (Fisher et al 2014). We
“sectioned” the initial lognormal NV o(D) (mean diameter of 160 and width of 160) numerically
with large numbers NS = 500000 of random sections per size bin to get “ideal” apparent diameter
distributions NA(D). Note in figure 3 that the apparent diameter distributions observed in sections
(blue) are dominated by larger particles than characterize the actual sphere volume distributions (red
and green), as discussed above. Of course, knowing this, observational counts can also be analyzed by
comparison of forward models of apparent diameter distributions obtained using random sectioning
techniques on different candidate true diameter distributions. This “forward approach” might be a
promising approach to modeling core-rim-thickness relationships from 2D section data.

We then inverted the NA(d) distributions of figure 3 using three different algorithms discussed
above (equations (6), (8), and (9)). In figure 3, all quantities are normalized by dividing by the respec-
tive total counts. For arithmetically binned profiles with ∆ = 25 (figure 3, left) the green (recovered
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Figure 2: Left: Histograms of apparent diameter as obtained from an initial δ-function NV o. A color
version can be found in the online version. Red curve: random numerical sectioning. Blue curve:
equation (1) with the F matrix defined by equations (6). The red and blue curves are arithmetically
binned. Green curve with dots: using equations (1) and (8) for F ; green curve with triangles: using
equations (9). Both green curves are on a geometrically spaced grid. These NA curves are plotted
against the respective arithmetic or geometric midpoints of the bins. When comparing arithmeti-
cally and geometrically binned quantities, they must both be converted to an equivalent density per
unit diameter, since the bin widths are different. Each curve is normalized by the total number of
measurements it contains. Right: inverting the apparent diameter distribution NA (blue symbols) ob-
tained from a delta function initial NV o (red symbols, all but one on the lower axis); all distributions
are binned into a linear diameter histogram with spacing ∆=10µm. The recovered NV is shown in
green symbols.
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Figure 3: Results from random sectioning of a lognormal distribution (mean diameter of 160 and
width of 160) into an apparent diameter distributionNA, and then invertingNA using several different
approaches. A color version can be found in the online version. Left: Arithmetic binning technique
of equations (6); the red curve is the original NV o distribution, the blue curve is the NA per bin, and
the green curve is recovered from NA using equations (6). Note that the number densities are scaled
by the total number of counts respectively. Right: geometrically binned inversions; the initial NV (D)
is red) and the randomly sectioned NA(d) in blue. The right and left NV have the same lognormal
size distribution, but look different because the bin width grows with diameter in the right hand plot.
The recovered NV , using the geometric midpoint method (equation 9) is shown by the green dashed
curve and the result obtained using equation (8) is shown by the green solid curve with symbols.
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NV ) curve almost completely overlaps the red (initial NV o) curve. In figure 3 (right) the original
lognormal distribution NV o (in red) is binned geometrically. The randomly sectioned NA(d) (500000
sections per NV bin) is shown in blue. We plot the recovered NV as obtained using two techniques:
the upper bin boundary method of equation (8) (green solid) and the geometric midpoint method of
equations (9) (green dashed). The most obvious message of figure 3 is the over-representation of large
particles in apparent diameter distributions with respect to the true distributions.

Next we compare the accuracy of the inversions using the three techniques, starting with the
random-section generated NA as described above, for three different lognormal NV o. In figures 4 - 6,
the blue curve is now the ratio of the initial NV o distribution (red) to the recovered NV (green). The
geometric binning approach of equation (8) does the most systematically unbiased job of reproducing
the initial distribution for these cases. The geometric technique of equations (9) significantly under-
estimates the smaller particles for narrower distributions (figure 4), and the arithmetic technique of
equations (6) overestimates the smallest particles for broad distributions (figure 6).

Figure 4: Sample “observations” of NA(d) (see figure 3) were obtained from 500k random sections
of each bin of an actual lognormal diameter distribution NV o(D) (red) with mean 150µm and width
100µm. A color version can be found in the online version. The NA(d) were then inverted into a
recovered NV (D) (green) distribution using (left) the arithmetic method of equations 6, (middle) the
geometric method of equation 8, and (right) the geometric method of equations 9. The blue curve
plots the ratio NV o/NV (right vertical axis); significant slopes in the blue ratio curves (right and left
panels) indicate systematic bias of the underlying techniques towards larger or smaller particles.

OBSERVATIONAL SAMPLING: REQUIREMENTS FOR ACCURACY

Here we give two different kinds of assessment of how many measurements of apparent diame-
ter are needed to get reliable estimates of the underlying true diameter distribution. We use geometric
binning with c = 1.15 and compare the inversions using equation (8) with those done using equations
(9) (figures 7 - 10); arithmetic binning gives similar results (not shown). The colors for the three
curves are as before (red is the initial NV o, green is the recovered NV , and blue is the ratio NV o/NV ).
Here, the number densities and diameters are plotted on a log-log scale so that one can see the low
end behavior better, where the bin width is narrower.
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Figure 5: As in figure 4 but for a lognormal NV o (red) with mean 150µm and width 200µm.

Figure 6: As in figure 4 but for a lognormal NV o (red) with mean 150µm and width 500µm.
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For these figures, in the upper panels equation (8) was used to recover NV , and in the lower
panels equations (9) were used. The number of “measurements” NS (expressed as random cuts per
NV o bin) used to create the NA distribution is given at the top of the columns. In figures 7, 9, and 10,
the first column (NS=100 random sections per true diameter bin) is adequate to give a fair idea of the
underlying size distribution and, as NS increases, the recovered NV becomes very well defined. In
figures 7 and 8 where the lognormal width = 100 µm, we see that defining Dj at the upper end of the
j-th bin (equation 8) gives better results as NS increases than defining Dj by the geometric midpoint
(equations 9). The systematic downward trend in the NV o/NV ratio resulting from equations (9),
seen in figures 4 - 6, is seen here as well. It is important to note that in figures 7 - 10 the initial
and recovered distributions have 32 size bins, making for a nicely resolved result but containing a
total number of measurements roughly 32 times the numbers labeling each plot. However, this test is
slightly unrealistic, because in reality the less abundant sizes are sampled less often than the abundant
sizes.

A Better Estimate of Observational Needs

To get an assessment that is closer to a real observation, we use a standard technique to model
the observation as a number-limited random sampling of the underlying NA distribution. This ap-
proach is more realistic because it provides more samples of the most common apparent diameters, as
would be the case in reality, whereas the above approach contains as many samples of rare size bins
as of bins containing common sizes. We first construct a “best case” NAo(d) from 500k random cuts
per size bin in NV o, and interpolate it onto a uniform grid. We compute the normalized cumulative
function

I(d) =

∫ d

0

NAo(x)dx, (18)

where I(dmax) = 1. We then draw NS random numbers uniformly distributed between 0 and 1; each
of these represents a value of I(d), which in turn corresponds to a specific value of d. The binned
histogram of these “measurements” has the underlying probability distribution NAo(d). We then use
equations (8) to recover NV from these histograms and compare it with the initial distribution NV o.
The results are shown in figures 11 and 12 for two different lognormal distributions, each showing 3
different values of NS (here, NS is the total number of apparent diameter measurements across the
entire observed histogram). We show results for 10-bin histograms as well as the previous 32-bin
histograms.

Overall these results suggest that 100 measurements of apparent diameter can capture a decent
representation of a narrow, well-resolved particle size distribution, at least with 10 diameter bins,
as far as obtaining a crude mean size and width. Broader, more subtle distributions require 300
measurements. Probably, 300 measurements or more is a practical and desirable goal for quantitative
work dedicated to looking for variations from one chondrite to another and/or within different sectors
of a given chondrite or matched samples. Future, automated or crowd-sourced counting schemes
tabulating thousands of objects would be needed to reveal subtle place-to-place variations or multiple
modes or “bumps”.

SUMMARY

This paper presents new algorithms for inverting histograms of particle apparent diameters in
2D sections into the actual underlying 3D volume size distributions they represent. Useful results can
still be obtained working with 2D sections, as long as their biases are realized and they are compared
with random slicing forward models of actual distributions. We find that one particular inversion
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using geometrical binning (equation 8) provides the least biased overall results. We show that more
than 100 measurements of the 2D apparent diameter distribution are required to obtain good results
for the underlying true diameter distribution.

Figure 7: In this figure each panel has three quantities plotted as a function of upper bin diameter,
for a geometrically binned case. The red curve is the initial lognormal distribution NV o(D) with a
mean diameter of 150 µm and width of 100 µm. The green curve is the NV recovered from a sample
NA computed from random sectioning of the original distribution NV o. The blue curve is the ratio
NV o/NV , with scale on the right axis. The number of random cuts used to obtain NA in each case
(NS , per diameter bin) is labeled on the plots, along with the inversion equation used (g8 or g9). For
example, the two upper panels show the NV recovered using equation (8), and the NV in the lower
panels used equations (9).
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Figure 8: This figure has the same structure as figure 7 but here we look at results from 10000 and
100000 randomly obtained “measurements”, as indicated.

Figure 9: This figure is similar to figure 7 but the initial NV o has a mean diameter of 150 µm and
width of 200 µm.
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Figure 10: This figure is similar to figure 7 but the initial NV o has a mean diameter of 150 µm and
width of 500 µm.
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Figure 11: To indicate the sample size needed to obtain reliable statistics, this figure plots inversions from
four different simulated “measurement samples” of 100, 300, 1000, and 3000 chondrule apparent diameters,
as binned into 32 bins (top) and 10 bins (bottom). The black curve represents the true initial diameters for a
narrow lognormal distribution with mean diameter 150µm and width 100µm. See text for explanation of the
sampling technique.
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Figure 12: To indicate the sample size needed to obtain reliable statistics, this figure plots inversions from
four different simulated “measurement samples” of 100, 300, 1000, and 3000 chondrule apparent diameters, as
binned into 32 bins (top) and 10 bins (bottom). The black curve represents the true initial diameters for a broad
lognormal distribution with mean diameter 150µm and width 500µm. See text for explanation of the sampling
technique.
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